1.完整项目描述和程序获取
>面包多安全交易平https://mbd.pub/o/bread/ZpiWlJ1s
>如果链接失效,可以直接打开本站店铺搜索相关店铺:
>如果链接失效,程序调试报错或者项目合作也可以加微信或者QQ联系。
2.部分仿真图预览
3.算法概述
随着QAM阶数的增加,数据传输速率得以提升,但同时也对信道质量、解调算法复杂度以及系统整体的抗干扰能力提出了更高要求。星座图整形是一种重要的手段,通过精心设计星座点布局,可以在保持或提高系统性能的同时,增加数据传输效率。在实际应用中,选择合适的QAM阶数和优化星座图设计是至关重要的,需要根据具体的通信环境和系统需求综合考量。
4.部分源码
........................................................................
% 绘制UMa场景的LOS概率曲线
plot(dists, P_uma, 'r-', 'LineWidth', 2) % 红色线表示
hold on % 保持图形以便叠加其他曲线
%% 城区微小区(UMi)场景
% 获取UMi场景的信道参数
Y_umi = func_3DMIMO_Channel('UMi');
% 初始化LOS概率数组
P_umi = zeros(size(dists));
% 计算每个距离对应的LOS概率(注意:此处未使用h_UT_m,可能需根据实际函数需求调整)
for k=1:length(P_umi)
P_umi(k) = Y_umi.Pr_LOS(dists(k));
end
% 绘制UMi场景的LOS概率曲线
plot(dists, P_umi, 'b-', 'LineWidth', 2) % 蓝色线表示
%% 宏小区农村(RMa)场景
% 获取RMa场景的信道参数
Y_rma = func_3DMIMO_Channel('RMa');
% 初始化LOS概率数组
P_rma = zeros(size(dists));
% 计算每个距离对应的LOS概率(同样未使用h_UT_m,需确认函数接口)
for k=1:length(P_rma)
P_rma(k) = Y_rma.Pr_LOS(dists(k));
end
% 绘制RMa场景的LOS概率曲线
plot(dists, P_rma, 'g-', 'LineWidth', 2) % 绿色线表示
% 添加图形元素
xlabel("距离(m)") % 设置横坐标标签及字体大小
ylabel("LOS概率") % 设置纵坐标标签及字体大小
grid on % 显示网格
legend('UMa场景的LOS概率', 'UMi场景的LOS概率', 'RMa场景的LOS概率') % 图例,标明各线条代表的场景
title('用户终端高度为35米');
0X_064m
---